Green-top Guideline No. 34
Peer Review Draft – September 2015

The Management of Ovarian Cysts in Postmenopausal Women

This is the second edition of this guideline, which was previously published in 2003 under the title Ovarian Cysts in Postmenopausal Women.

1. Purpose and scope

Ovarian cysts are diagnosed with increasing frequency in postmenopausal women as more patients are undergoing imaging in connection with medical care. An enlarged ovary or an ovarian cyst inevitably raises the question of its relevance to the woman’s symptoms and concerns for the possibility of ovarian cancer. The understandable fear of malignancy has driven many patients and their care providers to pursue further testing and surgical investigation.

The large numbers of ovarian cysts now being discovered by ultrasound and the low risk of malignancy of many of these cysts suggest that they need not all be managed surgically. The further investigation and management of these women has implications for morbidity, mortality, resource allocation and tertiary referral patterns.

This guideline aims to clarify when ovarian masses can be managed within a general gynaecological service or when referral to a specialist gynaecological oncology service is appropriate. This should help in determining whether surgical or expectant management is more appropriate. It should also help in avoiding unnecessary surgery or invasive or costly testing in the vast majority of patients in whom simple cysts are benign.

The management of confirmed ovarian malignancy is outside the remit of this guideline. Further information can be sought from the National Institute for Health and Care Excellence (NICE) clinical guideline 122 and the more recent Scottish Intercollegiate Guidelines Network (SIGN) guideline no. 135.1,2

2. Introduction and background epidemiology

Ovarian cysts are common in postmenopausal women. The exact prevalence is unknown given the limited amount of published data and the lack of established screening programmes for ovarian cancer.3,4 However, studies have estimated the incidence to be anywhere between 5% and 17%.5–7

The greater use of ultrasound in gynaecological practice and the widespread generalised use of other imaging techniques such as computerised tomography (CT) and magnetic resonance imaging (MRI) mean that an increasing proportion of these cysts will be found incidentally.

The vast majority of these cysts are benign. Therefore, the underlying management rationale is to distinguish between those cysts that are benign and those that are potentially malignant. The morbidity and outcomes can be improved by:

- using conservative management where possible
- the use of laparoscopic techniques where appropriate, thus avoiding laparotomy where possible
- referral to a gynaecological oncologist when appropriate.

3. Identification and assessment of evidence
This guideline was developed in accordance with standard methodology for producing RCOG Green-top Guidelines. MEDLINE, EMBASE and the Cochrane Library were searched. The search was restricted to articles published between 2001 and June/July 2014 in the English language. The databases were searched using the relevant Medical Subject Headings (MeSH) terms including all subheadings and this was combined with a keyword search. Search terms included ‘ovarian cysts’, ‘pelvic mass’, ‘adnexal mass’, ‘ovarian mass’, ‘ovarian neoplasms’ and ‘postmenopause’. The National Guideline Clearinghouse, NICE Evidence Search, Trip and Guidelines International Network were also searched for relevant guidelines. Where possible, recommendations are based on available evidence. Areas lacking evidence are highlighted and annotated as ‘good practice points’.

4. Diagnosis and significance of ovarian cysts in postmenopausal women

4.1 How are ovarian cysts diagnosed in postmenopausal women and what initial investigations should be performed?

Clinicians should be aware of the different presentations and significance of ovarian cysts in postmenopausal women. [GPP]

In postmenopausal women presenting with acute abdominal pain, the diagnosis of an ovarian cyst accident should be considered (e.g. torsion, rupture, haemorrhage). [GPP]

It is recommended that ovarian cysts in postmenopausal women should be initially assessed using CA125 and transvaginal ultrasound (see sections 4.3.1 and 4.4.1). [A]

Ovarian cysts in postmenopausal women could be diagnosed by one of three ways. Some women present with acute pain (e.g. torsion or rupture of a cyst) requiring immediate evaluation. Other women have their ovarian cysts identified during gynaecological investigations (e.g. for postmenopausal bleeding). Finally, some ovarian cysts are found incidentally in postmenopausal women undergoing investigations by other specialties for nongynaecological conditions (e.g. cross-sectional imaging for general surgical or medical indications).8–10 Evidence level 4

We did not identify any literature that would allow an estimate of the proportions of women with adnexal masses presenting by each route. The proportions are likely to vary by setting (primary or secondary health care), clinical referral patterns, patients’ thresholds for seeking care, clinicians’ thresholds for diagnostic tests, and many other factors.

In order to triage women and guide further management, an estimate needs to be made as to the risk that the ovarian cyst is malignant. At present, the recommended tests are serum CA125 measurement and pelvic transvaginal ultrasound (see sections 4.3.1 and 4.4.1).4,7,11–42 Evidence level 1+

Where the initial imaging modality was a CT scan, the recommendation would still be to obtain an ultrasound scan in order to calculate the risk of malignancy index (RMI), unless the CT scan is clearly indicative of ovarian malignancy and widespread intra-abdominal disease. Evidence level 1+

4.2 What is the role of history and examination in postmenopausal women with ovarian cysts?

A thorough medical history should be taken from the woman with specific attention to risk factors and symptoms suggestive of ovarian malignancy, and a family history of ovarian or breast cancer. [D]
Appropriate tests should be carried out in any postmenopausal woman who has developed symptoms within the last 12 months that suggest irritable bowel syndrome, particularly in women over 50 years of age or those with a significant family history of ovarian or breast cancer. [C]

A full physical examination of the woman is essential and should include body mass index (BMI), abdominal examination to detect ascites and characterise any palpable mass, and vaginal examination. [C]

Family history can be used to define women who are at increased risk of ovarian cancer. A woman is defined as being at high risk of ovarian cancer if she has a first-degree relative (mother, father, sister, brother, daughter or son) affected by cancer within a family with:

- two or more individuals with ovarian cancer, who are first-degree relatives of each other
- one individual with ovarian cancer at any age and one with breast cancer diagnosed under age 50 years who are first-degree relatives of each other
- one relative with ovarian cancer at any age and two with breast cancer diagnosed under 60 years who are connected by first-degree relationships
- three or more family members with colon cancer, or two with colon cancer and one with stomach, ovarian, endometrial, urinary tract or small bowel cancer in two generations. One of these cancers must be diagnosed under age 50 years and affected relatives should be first-degree relatives of each other
- one individual with both breast and ovarian cancer.

A woman is also considered at increased risk of ovarian cancer if she is a known carrier of relevant cancer gene mutations (e.g. BRCA1, BRCA2, mismatch repair genes), she is an untested first-degree relative of an individual with a relevant cancer gene mutation or she is an untested second-degree relative, through an unaffected man, of an individual with a relevant cancer gene mutation.2

Evidence level 2+

Ovarian cancer often presents with vague abdominal symptoms. Therefore the challenge is to make the correct diagnosis as early as possible despite the nonspecific nature of symptoms and signs. The symptoms are nonspecific and widely experienced among the general population (persistent abdominal distension, feeling full and/or loss of appetite, pelvic or abdominal pain, increased urinary urgency and/or frequency). However, these symptoms have greater significance in postmenopausal women, particularly over 50 years of age, if experienced persistently or on a frequent basis, and in those with a significant family history (two or more cases of ovarian or breast cancer diagnosed at an early age in first-degree relatives).8–10,43 Evidence level 2+

Although clinical examination has poor sensitivity in the detection of ovarian masses (15–51%), its importance lies in the evaluation of any palpable mass for tenderness, mobility, nodularity and ascites. Pelvic examinations, including a rectal exam, even under anaesthesia, have shown limited ability to identify an adnexal mass, especially with increasing patient BMI greater than 30. Nevertheless, features most consistently associated with an adnexal malignancy include a mass that is irregular, has a solid consistency, is fixed, nodular, or bilateral, or is associated with ascites. Obviously, postmenopausal women should be urgently referred to specialist services if physical examination identifies ascites and/or a pelvic or abdominal mass.44–46 Evidence level 2+

4.3 What blood tests need to be performed in postmenopausal women with ovarian cysts?

4.3.1 CA125
CA125 should be the only serum tumour marker used for primary evaluation as it allows the RMI of ovarian cysts in postmenopausal women to be calculated. [A]

CA125 levels should not be used in isolation to determine if a cyst is malignant. While a very high value may assist in reaching the diagnosis, a normal value does not exclude ovarian cancer due to the nonspecific nature of the test. [A]

CA125 was first described by Bast in 1981. CA125 is widely distributed in adult tissues. A routinely used cut-off value of 35 iu/ml is based upon the distribution of values in 99% of 888 healthy men and women.\(^\text{15,16}\) Evidence level 1+

Serum CA125 is well established, being raised in over 80% of epithelial ovarian cancer cases. If a cut-off of 30 iu/ml is used, the test has a sensitivity of 81% and specificity of 75%.\(^\text{31}\) Evidence level 2++

However, CA125 values can show wide variation, with lower levels (20 iu/ml) found in postmenopausal women.\(^\text{17–20}\) Evidence level 2++

Benign gynaecological conditions such as pelvic inflammatory disease, fibroids, acute events in benign cysts (e.g. torsion or haemorrhage) and endometriosis can all result in an increased CA125 level. Higher values are reported in Caucasian compared with African or Asian women.\(^\text{21–23}\) Evidence level 2+

Caffeine intake, hysterectomy and smoking have been associated with lower CA125 levels in some reports.\(^\text{23}\) Evidence level 2+

Numerous benign nongynaecological conditions that cause peritoneal irritation (tuberculosis, cirrhosis, ascites, hepatitis, pancreatitis, peritonitis, pleuritis) and other primary tumours that metastasise to the peritoneum (breast, pancreas, lung, and colon cancer) can also cause an elevated CA125.\(^\text{24,25}\) Evidence level 1–

CA125 alone has a pooled sensitivity and specificity of 78% for differentiating benign from malignant adnexal masses, with higher values noted in postmenopausal women.\(^\text{26}\) Evidence level 2+

4.3.2 Other tumour markers

There is currently not enough evidence to support the routine clinical use of other tumour markers such as human epididymis protein 4 (HE4), CEA, CDX2, CA72-4, CA19-9, alphafetoprotein (α-FP) or beta-human chorionic gonadotrophin (β-hCG) to assess the risk of malignancy in postmenopausal ovarian cysts. [B]

HE4

HE4 is a glycoprotein found in epididymal epithelium. Increased serum HE4 levels and expression of the HE4 (WFDC2) gene occur in ovarian cancer, as well as in lung, pancreas, breast, bladder, ureteric transitional cell and endometrial cancers.\(^\text{47–50}\) Evidence level 2++

HE4 is not increased in endometriosis and has fewer false-positive results with benign disease compared with CA125.\(^\text{50–52}\) Evidence level 2++

There are some preliminary data suggesting that HE4 is more sensitive and specific than serum CA125 for the diagnosis of ovarian cancer. A retrospective report (67 invasive and 166 benign
masses) found HE4 to have a higher sensitivity (73%) compared with CA125 (43.3%) for 95% specificity in distinguishing between benign and malignant ovarian masses and addition of HE4 to CA125 further improved sensitivity to 76.4%.53,54 \textit{Evidence level 2+}

It is estimated that using HE4 instead of serum CA125 would identify an additional seven patients with cancer with 81 fewer false positives (assuming a 10% prevalence of undiagnosed ovarian cancer in this population) for every 1000 women referred for diagnosis of a pelvic mass.1 \textit{Evidence level 2+}

There is some evidence to suggest that the combination of HE4 and serum CA125 is more specific but less sensitive than either marker in isolation. Recently a prospective study in 531 patients evaluated separate premenopausal and postmenopausal logistic regression algorithms incorporating CA125 and HE4 for the differential diagnosis of adnexal masses. The sensitivity and specificity in the postmenopausal group were 92.3% (95% CI 85.9–96.4) and 75.0% (95% CI 66.9–81.4) respectively.55 \textit{Evidence level 2+}

However, HE4 is not in routine clinical use and the data on HE4 are not substantial enough to enable it to be recommended routinely instead of or in addition to serum CA125 at the time of writing of this guideline.

\textbf{CEA, CDX2, CA72-4, CA19-9, α-FP and β-hCG}

There is not enough evidence to suggest that panels including multiple tumour markers offer any further advantage in the initial assessment of ovarian cysts in postmenopausal women. All of these markers show low sensitivity and wide variation in specificity when used in isolation or in combination with CA125. The routine use of any of these tumour markers in the initial clinical setting is not recommended.26,56–58 \textit{Evidence level 2+}

\subsection{4.4 What imaging should be employed in the assessment of ovarian cysts in postmenopausal women?}

\subsection{4.4.1 What is the role of ultrasound scanning?}

A transvaginal pelvic ultrasound is the single most effective way of evaluating ovarian cysts in postmenopausal women. [A]

Transabdominal ultrasound should not be used in isolation. It should be used to provide supplementary information to transvaginal ultrasound particularly when an ovarian cyst is large or beyond the field of view of transvaginal ultrasound. [A]

Transvaginal ultrasound scans should be performed by trained clinicians with expertise in gynaecological imaging. The morphological description and subjective assessment of the ultrasound features should be clearly documented to allow calculation of the risk of malignancy. [C]

On transvaginal ultrasound, a simple cyst is associated with five features: 1) round or oval shape; 2) thin or imperceptible wall; 3) posterior acoustic enhancement; 4) anechoic fluid; and 5) absence of septations or nodules. Characterisation of an adnexal mass as a simple cyst is important for management. Ultrasound identification of a simple cyst establishes a benign process in 95–99% of postmenopausal women.4,27,28 \textit{Evidence level 1–}
Transabdominal and transvaginal scanning are complementary and in some facilities, patients are scanned using both techniques; however, most of the literature regarding postmenopausal ovarian cysts refers to the use of transvaginal ultrasound. Because of the improved resolution of transvaginal ultrasound, it should be used whenever possible and is recommended as the first-line imaging modality for assessing ovarian cysts in postmenopausal women. When an ovarian cyst is large or beyond the field of view of transvaginal sonography, transabdominal ultrasound is recommended.29,30 \textit{Evidence level 1+}

Subjective assessment by ultrasound remains valuable in discriminating malignant from benign ovarian masses. ‘Pattern recognition’ of specific ultrasound findings with more complex scoring systems can produce sensitivity and specificity equivalent to logistic regression models, especially when performed by more experienced clinicians specialising in gynaecological imaging. This could potentially reduce the number of ‘unnecessary’ surgical interventions. However, this evidence derives from centres with particular expertise in this field and might not be universally achievable in all clinical settings with variable expertise.31–33 \textit{Evidence level 2–}

Studies have shown that transvaginal ultrasound may help characterise benign and malignant cysts, with a sensitivity of 89\% and a specificity of 73\% when using a morphology index. The findings, however, should be correlated with the history and laboratory tests. More recent studies have shown that use of a more specific Gynaecologic Imaging Reporting and Data System (GI-RADS) scoring may increase the sensitivity to 99.1\% and specificity to 85.9\%.12,34,35 \textit{Evidence level 2++}

In postmenopausal women, simple cysts are seen with a frequency of 5–17\% and are not related to hormonal therapy or time since onset of menopause, although some have observed decreasing frequency with time after the onset of menopause.4–7 \textit{Evidence level 2–}

In a 2-year follow-up study of asymptomatic postmenopausal women with simple cysts smaller than 5 cm, these cysts were shown to disappear (53\%), remain static (28\%), enlarge (11\%) or decrease (3\%) or fluctuate in size (6\%).5 Evidence from larger screening studies found a higher rate of resolution of unilocular cysts at 70\%, with only complex cysts having an increased risk of malignancy. Adnexal cysts 5 cm or smaller in postmenopausal women are rarely malignant.27,36–38 \textit{Evidence level 2–}

Postmenopausal ovarian cysts with a solid component include benign ovarian tumours such as some teratomas, thecomas, malignant ovarian tumours (primary and metastatic), or a torted ovary. Although ultrasound may not unequivocally distinguish malignant from benign cysts, it provides useful information. Various authors have devised morphologic scoring systems for pelvic masses to predict ovarian malignancy based on size, internal borders, and the presence of septa, papillary projections, and echogenicity. The presence of mural nodules or septations (especially with vascular flow) suggests that the ovarian cyst is neoplastic. However, it is important to note that no single ultrasound finding differentiates categorically between benign and malignant ovarian masses.39–42 \textit{Evidence level 2+}

\textbf{4.4.2 What is the role of colour flow Doppler studies?}

Colour flow Doppler studies are not recommended for the routine assessment of ovarian cysts in postmenopausal women. [B]

Spectral colour Doppler indices should not be used (resistive index, pulsatility index, peak systolic velocity, time-averaged \(V_{\text{max}}\)) to differentiate benign from malignant ovarian cysts. [B]
Malignant masses generally demonstrate neovascularity, with abnormal branching patterns or vessel morphology. These neovessels have lower resistance flow compared with native ovarian vessels in the postmenopausal women. Hence, sonographic evaluation using a combination of morphologic assessment and colour flow or power Doppler imaging to detect abnormal blood flow was proposed to assess suspicious ovarian cysts for their risk of malignancy.59–62 Evidence level 2++

However, subsequent studies have not consistently confirmed this. In particular, they found that any small decrease in the false-positive rate (i.e. increased specificity) over ultrasonography was at the cost of a large drop in sensitivity (i.e. increased false-negative rates).63–66 Evidence level 2+

Studies evaluating the use of spectral colour flow Doppler indices (i.e. resistive index, pulsatility index, peak systolic velocity, time-averaged V_{max}) have generally not demonstrated any significant improvement in diagnostic accuracy over morphologic assessment by ultrasound scan. Accurate measurement of Doppler indices is much more dependent on operator skill than assessment of ultrasound features, making it less applicable to widespread general ultrasound practice. Therefore, the value of spectral Doppler analysis is very limited.60,61,67 Evidence level 2++

However, the combined use of transvaginal ultrasound with power Doppler flow mapping has been shown in the research setting to improve sensitivity and specificity, particularly in complex cases. Three-dimensional power Doppler assessment of papillary projections or solid tumour areas may be helpful in reducing the false-positive rate of complex ovarian cysts. However, such tests are not universally available and cannot be recommended for the routine initial assessment of ovarian cysts in postmenopausal women.68–73 Evidence level 2++

4.4.3 What is the role of CT scan, MRI and cross-sectional imaging?

CT, MRI and positron emission tomography–CT (PET-CT) scans are not recommended for the initial evaluation of ovarian cysts in postmenopausal women. [B]

There is no clear consensus regarding the need for further imaging beyond transvaginal ultrasound in the presence of apparently benign disease. At the present time, the routine use of CT and MRI for the initial assessment of postmenopausal ovarian cysts does not improve the sensitivity or specificity obtained by transvaginal sonography in the differentiation between benign and malignant cysts. The lack of clear evidence of benefit, the relative expense, the resource limitations of these modalities, and the delay in referral and surgery that can result, mean that their initial routine use cannot yet be recommended. However, these additional imaging modalities may have a place in the evaluation of more complex lesions or in the setting of suspected metastatic spread.74,75 Evidence level 2++

4.4.3.1 CT scan

CT should not routinely be used as the primary imaging tool for the initial assessment of ovarian cysts in postmenopausal women because of its low specificity, its limited assessment of ovarian internal morphology and its use of ionising radiation. [B]

If, from the clinical picture, ultrasonographic findings and tumour markers, malignant disease is suspected, a CT scan of the abdomen and pelvis should be arranged, with onward referral to a gynaecological oncology multidisciplinary team. [B]

Currently, the best use of CT imaging is not to detect and characterise pelvic masses but to evaluate the abdomen for metastases when a malignant cyst is suspected based on transvaginal ultrasound images, examination and serum markers. CT is useful in selected cases when a nongynaecologic
origin of an adnexal cyst is suspected e.g. other nongynaecological retroperitoneal cystic masses. A CT scan can detect omental metastases, peritoneal implants, pelvic or paraaortic lymph node enlargement, hepatic metastases, obstructive uropathy and possibly an alternate primary cancer site, including pancreas or colon. Evidence level 2++

Hence, there is little reason presently to obtain a CT scan for the initial assessment of postmenopausal ovarian cysts other than for cancer staging if the cyst is thought to be malignant. Then, CT scan may be indicated to stage a suspected primary ovarian cancer or to identify the primary intra-abdominal cancer (e.g. colon, gastric, pancreatic) with suspected ovarian metastases.76-78 Evidence level 2++

4.4.3.2 MRI

MRI should not be routinely used as the primary imaging tool for initial assessment of ovarian cysts in postmenopausal women. [B]

MRI should be used as the second-line imaging modality for the characterisation of indeterminate ovarian cysts when ultrasound is inconclusive. [B]

MRI should be considered for characterisation of indeterminate adnexal cysts with identification of enhancing vegetations in cystic masses and the presence of ascites being the best indicator of malignancy. Further characterisation by MRI is also of value where an alternative diagnosis to an ovarian neoplasm is thought more likely or if, anatomically, the ovarian origin of a pelvic cyst is in doubt. Evidence level 2++

MRI is a valuable problem-solving tool when ultrasound is inconclusive or limited due to body habitus. MRI of the sonographically indeterminate adnexal mass can be used to guide patient care and reduce the costs of further management.

Women who clinically have a low risk of malignancy but have complex lesions on ultrasound scan are the ones who will most likely benefit from contrast-enhanced MRI. A recent meta-analysis comparing the incremental value of a second test to evaluate an indeterminate adnexal mass on ultrasound found that contrast-enhanced MRI contributed to a greater probability of ovarian cancer than CT, Doppler ultrasound or MRI without contrast. The documented major contribution of MRI in adnexal mass evaluation is its specificity as it can provide a confident diagnosis of many benign adnexal lesions, although this is particularly in the premenopausal patient population.74,76,78-83 Evidence level 2++

Functional MR sequences such as diffusion-weighted imaging (DWI), together with its quantitative derivative (an apparent diffusion coefficient – or ADC – map) and perfusion imaging can be added to conventional sequences. Diffusion MRI adds information regarding motion of water molecules within various tissues and can aid differentiation between benign and malignant pathology, with an improved accuracy rate of 95% with the combined technique in some hands. However, its ability to definitively differentiate benign from malignant adnexal masses still remains controversial, as many benign adnexal lesions can also have marked restricted diffusion. It also has more variable results in predominantly cystic lesions with small solid components/low cellularity or more well-differentiated tumours with lower cell turnover. Perfusion imaging is still mostly limited to research studies and not yet applicable to widespread clinical usage in ovarian cyst characterisation.

While assessment with MRI can improve overall sensitivity and specificity of ovarian cyst characterisation, there are inherent limitations to the more widespread use of MRI, which preclude
its routine use over transvaginal ultrasonography. These are both institutional restrictions (e.g. high cost, more restricted availability) and patient-related restrictions; MRI is contraindicated in certain patients (e.g. cardiac pacemaker, cochlear implants) and can have reduced acceptance by some patients (e.g. those with claustrophobia). Evidence level 2++

4.4.4 What is the role of various other radiological imaging modalities in distinguishing benign from malignant disease?

4.4.4.1 Three-dimensional ultrasound

Three-dimensional ultrasound morphologic assessment does not appear to improve the diagnosis of complex ovarian cysts and its routine use is not recommended in the assessment of postmenopausal ovarian cysts. [B]

There is currently insufficient evidence to support the use of three-dimensional ultrasound scans in the assessment of ovarian cysts in postmenopausal women. The use of three-dimensional power Doppler may contribute to the differentiation between benign and malignant masses because it improves detection of central blood vessels in papillary projections or solid areas, as discussed earlier. However, such tests are not universally available and cannot be recommended for the routine initial assessment of ovarian cysts in postmenopausal women. Evidence level 2++

4.4.4.2 PET-CT scan

Current data do not support the routine use of PET-CT scanning in the initial assessment of postmenopausal ovarian cysts. Data suggest there is no clear advantage over transvaginal ultrasonography. [C]

PET-CT scanning is currently not recommended in the assessment of ovarian cysts in postmenopausal women. It is equally not advocated in the diagnosis or initial staging of suspected ovarian cancer. The sensitivity and specificity of PET-CT in evaluating suspicious ovarian cysts in asymptomatic females are only 58% and 76% respectively. However, PET-CT may play a role in women with a known history of malignancy who present for evaluation of an adnexal mass to identify other sites of disease, but this is outwith the scope of this guideline. Evidence level 2+

5. Initial assessment and estimation of the risk of malignancy

5.1 Which risk of malignancy index (RMI) should be used?

A systematic review of diagnostic studies concluded that the ‘RMI I’ is the most effective for women with suspected ovarian cancer. [A]

In order to allow the calculation of the RMI I, ultrasound reports should list the presence or absence of the features that make up the ultrasound component of this scoring system. [GPP]

An RMI I score with a threshold of 200 should be used to predict the likelihood of ovarian cancer and to plan further management. [A]

CT of the abdomen and pelvis should be performed for all postmenopausal women with ovarian cysts who have an RMI I score greater than or equal to 200, with onward referral to a gynaecological oncology multidisciplinary team. [B]
It is recommended that a ‘risk of malignancy index’ (RMI) should be used to guide the management of postmenopausal women with ovarian cysts, as an effective way of triaging these women into those who are at low or high risk of malignancy, and who hence may be managed by a general gynaecologist, or in a cancer unit or cancer centre.99,100 \textit{Evidence level 1+}

The original RMI I was first described by Jacobs et al. in 1990.11 It has since evolved into RMI II,99 RMI III100 and RMI IV101. \textit{Evidence level 2++}

\textbf{Calculation of the RMI I}

The RMI I combines three presurgical features. It is a product of the serum CA125 level (iu/ml); the menopausal status (M); and an ultrasound score (U) as follows:

\[\text{RMI} = U \times M \times \text{CA125}. \]

- The ultrasound result is scored 1 point for each of the following characteristics: multilocular cysts, solid areas, metastases, ascites and bilateral lesions. $U = 0$ (for an ultrasound score of 0), $U = 1$ (for an ultrasound score of 1), $U = 3$ (for an ultrasound score of 2–5).
- The menopausal status is scored as $1 = \text{premenopausal}$ and $3 = \text{postmenopausal}$. This guideline is directed at postmenopausal women and therefore all will be allocated the same score of 3 for menopausal status.
- Serum CA125 is measured in iu/ml and can vary between zero and hundreds or even thousands of units.

A systematic review of diagnostic studies concluded that the RMI I was the most effective for women with suspected ovarian malignancy. The pooled sensitivity and specificity in the prediction of ovarian malignancies was 78\% (95\% CI 71–85\%) and 87\% (95\% CI 83–91\%) respectively for an RMI I score of 200.14,102–109 \textit{Evidence level 1++}

Although an RMI threshold of 200 is recommended, benign conditions may cause elevation of the RMI score and early malignancy may not. Those women who are at low risk of malignancy also need to be triaged into those where the risk of malignancy is sufficiently low to allow conservative management and those who still require intervention of some form.

When ovarian malignancy is considered likely based on clinical assessment and an RMI I score greater than or equal to the threshold of 200, cross-sectional imaging in secondary care, in the form of a CT scan of the abdomen and pelvis, is indicated to help assess the extent of disease and to help exclude alternative diagnoses, with onward referral to a gynaecological oncology multidisciplinary team. Clinical acumen has to be used to decide further on the most appropriate management of the woman, including the location of prospective surgery.110 \textit{Evidence level 1+}

It should be appreciated, however, that no currently available tests are perfect, offering 100\% specificity and sensitivity. It is also difficult to exactly correlate a particular RMI I score to an absolute risk of actual malignancy. However, women could be counselled that RMI scores of less than 25, between 25 and 250 and more than 250 carry a risk of cancer of less than 3\%, around 20\% and around 75\% respectively, based on historical validation data.111 \textit{Evidence level 2+}

\textbf{Discrepancy between NICE and SIGN guidelines}

The NICE guideline on ovarian cancer4 recommends that the RMI I score should be calculated for women with suspected ovarian malignancy and used to guide the woman’s management. The NICE guideline development group felt that an RMI I cut-off of 250 should be used because ‘this would ensure access to specialist centres whilst not overburdening them with benign disease (and the additional costs associated with this)’.112 Using a cut-off point of 250, a sensitivity of 70\% and
specificity of 90% can be achieved. Thus, the great majority of women with ovarian cancer will be dealt with by gynaecological oncologists in cancer centres, with only a small number of referrals of women with benign conditions. However, as most of the cysts are likely to be benign, gynaecologists in units at a more local level will perform the majority of surgery. Evidence level 1++

The more recent SIGN guideline on the management of epithelial ovarian cancer endorsed the use of the originally described cut-off value of 200 to guide further management. The pooled sensitivity and specificity in the prediction of ovarian malignancies was 78% and 87% respectively for an RMI I score of 200. It was felt that the value of the cut-off score used affected the sensitivity of RMI I relative to the specificity; a low cut-off score (i.e. 200) could mean that some women who did not have ovarian cancer would be unnecessarily referred for specialist consultation and treatment in a gynaecological oncology setting. Although most ovarian cysts in postmenopausal women will be benign, a higher cut-off score (i.e. 250) could mean that some women who did have ovarian cancer would not be identified nor referred for specialist treatment under a gynaecological oncologist’s care, possibly compromising their outcomes. Evidence level 1++

It is the guideline developers’ view that, in the light of existing best evidence and recent literature, to recommend the RMI I cut-off value of 200 to initiate a CT scan and onward referral to a gynaecological oncology multidisciplinary team meeting for further evaluation.

5.2 What other scoring systems are available and when should they be used?

Although other scoring systems are described, they are not universally available, rely on specific assays and expert evaluation, with lower specificity and hence are not recommended for the routine initial assessment of ovarian cysts in postmenopausal women. [A]

An estimation of the risk of malignancy in an ovarian cyst has been assessed using over 80 different models. Simple models use a discrete cut-off value of indices such as CA125, pulsatility index and resistance index. Intermediate models include morphology scoring systems and the RMI. At present the RMI is the most widely used model to estimate the risk of malignancy in an ovarian cyst. Advanced models include artificial neural networks and multiple logistic regression models. Unfortunately, many studies do not look specifically at postmenopausal women and, as such, reported results may not be applicable to this specific patient group. Evidence level 1+

5.2.1 International Ovarian Tumor Analysis (IOTA) group ultrasound simple rules and logistic regression model LR2

The IOTA group has published the largest study to date investigating the use of ultrasound in differentiating benign and malignant ovarian masses. Simple ultrasound rules were derived from the IOTA group data to help classify masses as benign (B-rules) or malignant (M-rules). Using these morphological rules, the reported sensitivity was 95% and the specificity was 91%, with a positive likelihood ratio of 10.37 and a negative likelihood ratio of 0.06. Women with an ovarian mass with any of the M-rules ultrasound findings should be referred to a gynaecological oncological service. If the ovarian cysts are not clearly classifiable from these rules, further investigation by a specialist in gynaecological ultrasound is appropriate. Triaging women using the IOTA logistic regression model LR2 (a six-variable prediction model) was proposed as an alternative to RMI-based protocols, suggesting that the IOTA protocol would avoid major surgery for more women with benign cysts while still appropriately referring more women with a malignant cyst to a gynaecological oncologist. Data about the use of LR2 are still emerging and it cannot be recommended for routine clinical use as yet. Evidence level 1+
Table 1. IOTA group simple ultrasound rules

<table>
<thead>
<tr>
<th>B-rules</th>
<th>M-rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unilocular cysts</td>
<td>Irregular solid tumour</td>
</tr>
<tr>
<td>Presence of solid components where the largest solid component < 7 mm</td>
<td>Ascites</td>
</tr>
<tr>
<td>Presence of acoustic shadowing</td>
<td>At least four papillary structures</td>
</tr>
<tr>
<td>Smooth multicellular tumour with a largest diameter < 100 mm</td>
<td>Irregular multicellular solid tumour with largest diameter ≥ 100 mm</td>
</tr>
<tr>
<td>No blood flow on colour Doppler</td>
<td>Prominent blood flow on colour Doppler</td>
</tr>
</tbody>
</table>

5.2.2 The Risk of Malignancy Algorithm (ROMA)

ROMA is a quantitative test using CA125, HE4 concentration and menopausal status to calculate the risk of ovarian cancer. A numerical score is obtained based on an algorithmic equation calculation, with a cut-off value of 2.27 representing a high risk of malignancy. ROMA must be interpreted in conjunction with an independent clinical and radiological assessment and is not intended to be a screening or a stand-alone diagnostic assay. ROMA calculation requires the use of special assays for CA125 and HE4. Overall, it has a sensitivity of 89% and a specificity of 75%. Although ROMA is promising for distinguishing epithelial ovarian cancer from benign ovarian cysts, HE4 is not better than CA125 for malignancy prediction. ROMA utilisation in routine clinical setting requires further evaluation.55,123-126 Evidence level 1+

5.2.3 OVA1®

OVA1® (Vermillion, Inc., Austin, Texas) is a quantitative assay measuring five serum proteins (CA125, transthyretin, apolipoprotein A1, beta 2-microglobulin and transferrin) and combining them into a numerical score. It requires the use of specific assays and special software (OvaCalc) to enter the results manually. Using a special algorithm, a numerical score is calculated (range 0.0–10.0) with a value higher than 4.4 being indicative of a high risk of malignancy in postmenopausal women. Although OVA1 has a high sensitivity, it shows a lower specificity and positive predictive value compared with the RMI.127-130 Evidence level 1+

6. How do you manage ovarian cysts in postmenopausal women?

6.1 What are the different management options and eligibility criteria?

The clinician must try to differentiate cysts that are most likely to be benign from those that are likely to be malignant based on the clinical assessment and RMI. A decision can then be made regarding the most appropriate management options. Cysts with a low likelihood of malignancy can often be managed conservatively. Selected cases with an RMI of less than 200 can be managed surgically by laparoscopic salpingo-oophorectomy after discussion with the patient. Conversely, those cysts that are likely to be malignant are best managed with further imaging in the form of a CT scan and referral to a gynaecological oncologist.

6.1.1 Do all postmenopausal women with ovarian cysts require surgical evaluation and is there a role for conservative management?

Asymptomatic, simple, unilateral, unilocular ovarian cysts, less than 5 cm in diameter, have a low risk of malignancy. In the presence of normal serum CA125 levels, these cysts can be managed conservatively, with a repeat evaluation in 4–6 months. It is reasonable to discharge these women
from follow-up after 1 year if the cyst remains unchanged or reduces in size, with normal CA125, taking into consideration the woman’s wishes and surgical fitness. [A]

If the woman is symptomatic, further surgical evaluation is necessary (see section 6.1.2). [B]

A woman with a suspicious or persistent complex adnexal mass needs surgical evaluation (see section 6.1.2). [A]

Women at low risk of malignancy (RMI I less than 200) need to be triaged into those where the risk of malignancy is sufficiently low to allow conservative management and those who still require intervention of some form. Evidence level 1+

Numerous studies have looked at the risk of malignancy in ovarian cysts, comparing ultrasound morphology with either histology at subsequent surgery or by close follow-up of those women managed conservatively. The risk of malignancy in these studies of simple cysts that are less than 5 cm, unilateral, unilocular and echo-free with no solid parts or papillary formations is less than 1%. In addition, some studies reported that more than 50% of these simple cysts might resolve spontaneously within three months. Evidence level 2++

Simple cysts were seen in 14% of a cohort of 15,735 women from the intervention arm of the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial through 4 years of transvaginal ultrasound screening. Simple cysts were seen in 14% of women the first time that their ovaries were visualised. The 1-year incidence of new simple cysts was 8%. Among ovaries with one simple cyst at the first screen, 54% retained one simple cyst and 32% had no cyst 1 year later. Simple cysts did not increase the risk of subsequent invasive ovarian cancer. Most cysts appeared stable or resolved by the next annual examination. Evidence level 2++

Thus, it is reasonable to manage these simple cysts conservatively: with a follow-up assessment of serum CA125 and a repeat ultrasound scan. The ideal frequency of repeat imaging is yet to be determined. A reasonable proposed interval is 4–6 months. This, of course, depends upon the views and symptoms of the woman, her surgical fitness and on the gynaecologist’s clinical assessment. It is reasonable to discharge these women from follow-up after 1 year if the cyst remains unchanged or reduces in size, with normal CA125. Evidence level 2–

Some women requiring surgical intervention are at substantial risk of perioperative morbidity and mortality. In such instances, repeat imaging often is safer than immediate operative intervention, although the frequency of repeat imaging has not been determined.

6.1.2 What are the available surgical options?

Women who do not fit the criteria for conservative management should be offered surgical treatment in the most suitable location and set-up and by the most suitable surgeon as determined by the RMI. Initial surgical management options that have been assessed include imaging-guided aspiration of the cyst, laparoscopy and laparotomy.

6.1.2.1 What is the role of aspiration of ovarian cysts in postmenopausal women?

Aspiration is not recommended for the management of ovarian cysts in postmenopausal women except for the purposes of symptom control in women with advanced malignancy who are unfit to undergo surgery or further intervention. [A]
Aspiration of an ovarian cyst in a postmenopausal woman is not recommended. Firstly, diagnostic cytological examination of ovarian cyst fluid is poor at distinguishing between benign and malignant tumours, with sensitivities in most studies of around 25\%.\(^{146-151} \text{Evidence level 1+}\)

In addition, even when a benign cyst is aspirated, the procedure is often not therapeutic. Approximately 25\% of cysts in postmenopausal women will recur within 1 year of the procedure.\(^{152} \text{Evidence level 2+}\)

Finally, aspiration of a malignant cyst may induce spillage and seeding of cancer cells into the peritoneal cavity, thereby adversely affecting the stage and prognosis. There have been many cases of aspirated malignant masses recurring along the needle track through which the aspiration was done. Furthermore, there is strong evidence that spillage from a malignant cyst has an unfavourable impact on overall and disease-free survival of stage I cancer patients compared with patients with tumours that were removed intact.\(^{153-157} \text{Evidence level 2++}\)

Aspiration, therefore, has no role in the management of asymptomatic ovarian cysts in postmenopausal women. An exception exists for those symptomatic women who are medically unfit to undergo surgery or further intervention. In these women, aspiration will provide relief of their symptoms, albeit temporarily.\(^{158,159} \text{Evidence level 2+}\)

6.1.2.2 Could postmenopausal ovarian cysts be managed by laparoscopy?

Women with an RMI I of less than 200 are suitable for laparoscopic management. \([B]\)

Laparoscopic management of ovarian cysts in postmenopausal women should be undertaken by a surgeon with suitable experience. \([GPP]\)

Laparoscopic management of ovarian cysts in postmenopausal women should include bilateral salpingo-oophorectomy rather than cystectomy. \([C]\)

Women undergoing laparoscopic salpingo-oophorectomy should be counselled preoperatively that a full staging laparotomy would be required if evidence of malignancy is revealed. \([GPP]\)

Where possible, the surgical specimen should be removed intact in a laparoscopic retrieval bag via the umbilical port. This results in less postoperative pain and a quicker retrieval time than when using lateral ports of the same size. \([B]\)

The laparoscopic management of benign adnexal masses is well established. However, when managing ovarian cysts in postmenopausal women, it should be remembered that the main reason for operating is to exclude or to assess a suspected ovarian malignancy. If an ovarian malignancy is present, then the appropriate management in the postmenopausal woman is to perform a laparotomy and a total abdominal hysterectomy, bilateral salpingo-oophorectomy and full staging procedure. The laparoscopic approach should therefore be reserved for those women who are not eligible for conservative management but still have a relatively low risk of malignancy. A suitably experienced surgeon may operate laparoscopically on women who fall below this cut-off point (RMI I less than 200).

In postmenopausal women, the appropriate laparoscopic treatment for an ovarian cyst that is not suited for conservative management is salpingo-oophorectomy, with removal of the ovary intact in a retrieval bag without cyst rupture into the peritoneal cavity. This is the case even when the risk of malignancy is low. In most cases this is likely to be a bilateral oophorectomy or salpingo-
oophorectomy, but this will be determined by the wishes of the woman. There is the risk of cyst rupture during cystectomy and, as described above, cyst rupture into the peritoneal cavity may have an unfavourable impact on disease-free survival in the small proportion of cases with an ovarian cancer.

Removing tissue in a laparoscopic retrieval bag via the umbilical port has been investigated in a randomised and a large prospective trial. Removal of benign ovarian masses via the umbilical port should be utilised where possible as this results in less postoperative pain and a quicker retrieval time. Avoidance of extending accessory ports is beneficial in reducing postoperative pain, as well as reducing incidence of incisional hernia and incidence of epigastric vessel injury. It also leads to improved cosmesis.160–162 Evidence level 2++

6.1.2.3 When should laparotomy be undertaken?

All ovarian cysts that are suspicious of malignancy in a postmenopausal woman, as indicated by a RMI I greater than or equal to 200, CT findings, clinical assessment or findings at laparoscopy require a full laparotomy and staging procedure. [A]

If a malignancy is revealed during laparoscopy or from subsequent histology, it is recommended that the woman be referred to a cancer centre for further management. [C]

A rapid referral to a specialist gynaecological oncology centre is recommended for women who are found to have an ovarian malignancy. [B]

Women who are at high risk of malignancy, as calculated using the RMI (greater than or equal to 200), are likely to need a laparotomy and full staging procedure as their primary surgery. In addition to the calculated risk of malignancy, other factors such as any other medical conditions affecting the risk of surgery will affect the decision as to whether a woman is able to undergo surgery, what type of surgery is performed and where this takes place. Evidence level 1+

If an ovarian cancer is discovered during laparoscopic surgery or on histology, a subsequent full staging procedure is likely to be required. Secondary surgery should be performed as soon as feasible. It is important to consider borderline ovarian tumours as a histological diagnosis when undertaking any surgery for ovarian masses. When such a histological diagnosis is made or strongly suspected, referral to a gynaecological oncology centre is recommended. Preoperative diagnosis can be difficult with radiological and serum markers being relatively insensitive, especially in their differentiation from stage I ovarian epithelial cancers. Although up to 20% of borderline ovarian tumours appear as simple cysts on ultrasonography, the majority of such tumours will have suspicious ultrasonographic finding.2,156,163 Evidence level 2++

The staging laparotomy should ideally be performed through a midline incision by an appropriately trained surgeon working as part of a multidisciplinary team in a cancer centre and should include:

- laparotomy with clear documentation
- cytology – ascites or washings
- total abdominal hysterectomy, bilateral salpingo-oophorectomy and omentectomy
- biopsies from any suspicious areas.2,163 Evidence level 2–

Some centres may make decisions about the extent of surgery on the basis of frozen section, according to local cancer centre protocol, and others may alter the timing of surgery in relation to chemotherapy in advanced cases, particularly with the advent of neoadjuvant chemotherapy. The
laparotomy and staging procedure may include bilateral selective pelvic and para-aortic lymphadenectomy. Further details of the surgical management of ovarian cancer are beyond the scope of this guideline.2 Evidence level 2+

6.2 Where should these women be managed?

The appropriate location for the management should reflect the structure of cancer care in the UK. [A]

Mean survival time for women with ovarian malignancy is significantly improved when managed within a specialist gynaecological oncology service. Hence early diagnosis and referral is important. As the risk of malignancy increases, the appropriate location for management changes. Therefore, while women with a low risk of malignancy (RMI I less than 200) may be managed in a general gynaecology or a cancer unit, those who are at higher risk (RMI I greater than or equal to 200 and suspicious CT findings) should be assessed and managed in a cancer centre.164–167 Evidence level 1+

6.3 Who should manage ovarian cysts in postmenopausal women?

While a general gynaecologist might manage women with a low risk of malignancy (RMI I less than 200) in a general gynaecology or cancer unit, women who are at higher risk should be managed in a cancer centre by a trained gynaecological oncologist, unless the multidisciplinary team review is not supportive of a high probability of ovarian malignancy. [A]

The prognosis for women with ovarian cancer is improved when the entire tumour is removed at surgery. Optimal surgical cytoreduction and appropriate staging is more likely to be achieved by a trained gynaecological oncologist in a cancer centre setting. However, the prevalence of ovarian cysts in the postmenopausal population and the increase in their diagnosis means that it would not be feasible for all women with ovarian cysts that require surgery to be referred to a cancer centre. Women need to be triaged so that a gynaecological oncologist in a cancer centre operates on those women with an elevated RMI where the multidisciplinary team review is supportive of a high risk of ovarian malignancy. When the RMI is elevated but the multidisciplinary team review is not suggestive of ovarian malignancy, a lead clinician in a cancer unit could perform the surgery. Women at low risk may be operated on by a general gynaecologist or offered conservative management. The high specificity and sensitivity of the RMI I discussed in section 5.1 makes it an ideal and simple way of triaging women for this purpose.164–168 Evidence level 1++

7. Recommendations for future research

- Determine the optimum RMI I threshold that should be applied in secondary care to guide the management of women with suspected ovarian cancer.
- Define the Minimum Data Sets for postmenopausal women with ovarian cysts.
- New tumour markers should continue to undergo evaluation as diagnostic tests as they are identified, using appropriate methodological standards, with more direct comparisons of alternative tests.
- Additional external validation of scoring systems in new populations is required before widespread adaptation can be recommended, with attention paid to adequate sample size.
- Follow-up studies, with clear definitions for ‘benign’ lesions, clear protocols for follow-up and documentation of loss to follow-up, are needed.
Data on adverse outcomes from various surgical settings are needed. The risks of diagnostic laparoscopy or laparotomy, particularly in asymptomatic women who ultimately prove to have a benign lesion, are unclear.

8. Auditable topics

- Proportion of women with an RMI I score of 200 or greater referred to a specialist gynaecological cancer multidisciplinary team (100%).
- Proportion of women where a minimal set of data is available to calculate the risk of malignancy (100%).
- Proportion of women with an RMI I score greater than or equal to 200 who, following ultrasound scan, receive a CT scan of the abdomen and pelvis as the initial staging investigation and are subsequently offered staging surgery (100%).
- Proportion of women who, following surgery for a presumed benign cyst in a general gynaecology setting (RMI I less than 200), turn out to have a malignant diagnosis (i.e. false-negative rate) (less than 15%).
- Proportion of women who, following surgery for a presumed high risk of malignancy cyst in a specialised gynaecology oncology setting (RMI I greater than or equal to 200), turn out to have a benign diagnosis (i.e. false-positive rate) (less than 25%).

9. Useful links and support groups

References

Appendix I: Clinical algorithm for the management of postmenopausal women with ovarian cysts

Postmenopausal ovarian cyst

Measure CA125
TVS ± TAS
Calculate RMI I

RMI I < 200
(low risk of malignancy)

Cysts fulfilling **ALL** of the following criteria:
asymptomatic, simple cyst, < 5 cm, unilocular, unilateral

Consider **conservative management**

Repeat assessment in 4–6 months
CA125, TVS ± TAS

Resolve

Persistent unchanged
Repeat assessment in another 4–6 months

Change in features
Consider intervention

RMI I ≥ 200
(increased risk of malignancy)

Cysts with **ANY** of the following features:
symptomatic, nonsimple features, > 5 cm, multilocular, bilateral

CT scan (abdomen and pelvis)
referral for gynaecological oncology MDT review

MDT review
High likelihood of ovarian malignancy

Laparotomy
Full staging procedure by a trained gynaecological oncologist

MDT review
Low likelihood of ovarian malignancy

Laparotomy
Pelvic clearance (TAH + BSO + omentectomy + peritoneal cytology) by a suitably trained gynaecologist

Abbreviations
BSO bilateral salpingo-oophorectomy
CT computerised tomography
MDT multidisciplinary team meeting
RMI risk of malignancy index
TAH total abdominal hysterectomy
TAS transabdominal ultrasound
TVS transvaginal ultrasound
Appendix II: Explanation of guidelines and evidence levels

Clinical guidelines are: ‘systematically developed statements which assist clinicians and patients in making decisions about appropriate treatment for specific conditions’. Each guideline is systematically developed using a standardised methodology. Exact details of this process can be found in Clinical Governance Advice No. 1 Development of RCOG Green-top Guidelines (available on the RCOG website at http://www.rcog.org.uk/green-top-development). These recommendations are not intended to dictate an exclusive course of management or treatment. They must be evaluated with reference to individual patient needs, resources and limitations unique to the institution and variations in local populations. It is hoped that this process of local ownership will help to incorporate these guidelines into routine practice. Attention is drawn to areas of clinical uncertainty where further research may be indicated.

The evidence used in this guideline was graded using the scheme below and the recommendations formulated in a similar fashion with a standardised grading scheme.

Classification of evidence levels

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1+++</td>
<td>High-quality meta-analyses, systematic reviews of randomised controlled trials or randomised controlled trials with a very low risk of bias</td>
</tr>
<tr>
<td>1++</td>
<td>Well-conducted meta-analyses, systematic reviews of randomised controlled trials or randomised controlled trials with a low risk of bias</td>
</tr>
<tr>
<td>1+</td>
<td>Meta-analyses, systematic reviews of randomised controlled trials or randomised controlled trials with a high risk of bias</td>
</tr>
<tr>
<td>2+++</td>
<td>High-quality systematic reviews of case–control or cohort studies or high-quality case–control or cohort studies with a very low risk of confounding, bias or chance and a high probability that the relationship is causal</td>
</tr>
<tr>
<td>2++</td>
<td>Well-conducted case–control or cohort studies with a low risk of confounding, bias or chance and a moderate probability that the relationship is causal</td>
</tr>
<tr>
<td>2+</td>
<td>Case–control or cohort studies with a high risk of confounding, bias or chance and a significant risk that the relationship is not causal</td>
</tr>
<tr>
<td>2–</td>
<td>Case–control or cohort studies with a high risk of confounding, bias or chance and a significant risk that the relationship is not causal</td>
</tr>
<tr>
<td>3</td>
<td>Non-analytical studies, e.g. case reports, case series</td>
</tr>
<tr>
<td>4</td>
<td>Expert opinion</td>
</tr>
</tbody>
</table>

Grades of Recommendation

A At least one meta-analysis, systematic reviews or RCT rated as 1++, and directly applicable to the target population; or a systematic review of RCTs or a body of evidence consisting principally of studies rated as 1+, directly applicable to the target population and demonstrating overall consistency of results

B A body of evidence including studies rated as 2++ directly applicable to the target population, and demonstrating overall consistency of results; or Extrapolated evidence from studies rated as 1++ or 1+

C A body of evidence including studies rated as 2+ directly applicable to the target population, and demonstrating overall consistency of results; or Extrapolated evidence from studies rated as 2++

D Evidence level 3 or 4; or Extrapolated evidence from studies rated as 2+

Good Practice Points
Recommended best practice based on the clinical experience of the guideline development group

This guideline was produced on behalf of the Royal College of Obstetricians and Gynaecologists by:
Dr M Mehasseb MRCOG, Glasgow; Dr N Siddiqui FRCOG, Glasgow; and Dr F Bryden FRCR, Glasgow

and peer reviewed by:

Committee lead reviewers were: Dr PS Arunakumari FRCOG, Basildon and Dr CJ Crowe MRCOG, London.

The chairs of the Guidelines Committee were: Dr M Gupta\(^1\) MRCOG, London; Dr P Owen\(^2\) FRCOG, Glasgow; and Dr AJ Thomson\(^1\) MRCOG, Paisley.

\(^1\)co-chairs from June 2014\(^2\) until May 2014.

All RCOG guidance developers are asked to declare any conflicts of interest. A statement summarising any conflicts of interest for this guideline is available from: XXX

The final version is the responsibility of the Guidelines Committee of the RCOG.

The review process will commence in 20XX, unless otherwise indicated.

DISCLAIMER

The Royal College of Obstetricians and Gynaecologists produces guidelines as an educational aid to good clinical practice. They present recognised methods and techniques of clinical practice, based on published evidence, for consideration by obstetricians and gynaecologists and other relevant health professionals. The ultimate judgement regarding a particular clinical procedure or treatment plan must be made by the doctor or other attendant in the light of clinical data presented by the patient and the diagnostic and treatment options available.

This means that RCOG Guidelines are unlike protocols or guidelines issued by employers, as they are not intended to be prescriptive directions defining a single course of management. Departure from the local prescriptive protocols or guidelines should be fully documented in the patient’s case notes at the time the relevant decision is taken.